Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
King, R. B., Houk, L. W. \& Pannell, K. H. (1969). Inorg. Chem. 8, 1042-1048.
Mays, M. J. \& Sears, P. L. (1973). J. Chem. Soc. Dalton Trans. pp. 1873-1875.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
Treichel, P. M. \& Molzahn, D. C. (1979). Synth. React. Inorg. Met.-Org. Chem. 9, 21.

Acta Cryst. (1990). C46, 135-136

Structure of cis-Dichlorobis(dimethyl sulfide)platinum(II)

By Gregory W. Horn, Ravi Kumar, Andrew W. Maverick,* Frank R. Fronczek and Steven F. Watkins
Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA

(Received 12 July 1989; accepted 23 August 1989)

Abstract

 clinic, $\quad P 2_{1} / n, \quad a=8.719(2), \quad b=13 \cdot 186(4), \quad c=$ $9 \cdot 328$ (1) $\AA, \beta=106 \cdot 30(1)^{\circ}, V=1029 \cdot 3$ (7) $\AA^{3}, Z=$ $4, D_{x}=2.518 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Мo $K \alpha)=0.71073 \AA, \mu=$ $146 \cdot 2 \mathrm{~cm}^{-1}, \quad F(000)=720, \quad T=296(1) \mathrm{K}, \quad 3559$ unique reflections measured, final $R=0.034$ over 2495 reflections having $F_{o}>3 \cdot 0 \sigma\left(F_{o}\right)$. The geometry about the Pt atom is square planar with a maximum deviation of 0.007 (2) \AA from the least-squares plane. $\mathrm{Pt}-\mathrm{S}$ bond lengths: 2.269 (1) and 2.272 (1) \AA; $\mathrm{S}-\mathrm{Pt}-\mathrm{S}$ angle: $94.75(5)^{\circ} . \mathrm{Pt}-\mathrm{Cl}$ bond lengths: 2.315 (1) and 2.319 (1) \AA; $\mathrm{Cl}-\mathrm{Pt}-\mathrm{Cl}$ angle: $89.69(5)^{\circ}$. S- $\mathrm{Pt}-\mathrm{Cl}$ angles: $174 \cdot 10$ (5), $91 \cdot 11$ (5), $84 \cdot 44$ (5) and $179 \cdot 18$ (5) ${ }^{\circ}$. Average S-C bond length: 1.785 (3) \AA. Centrosymmetrically related molecules stack in chains along the \mathbf{c} direction with alternating $\mathrm{Pt}-\mathrm{Pt}$ distances of 3.9971 (4) and $5 \cdot 4147$ (4) \AA, and $\mathrm{Pt}-\mathrm{Pt}-\mathrm{Pt}$ angles of $164 \cdot 52(1)^{\circ}$. The closest intermolecular contact is between Cl 2 and Cl at $-x-\frac{1}{2}$, $y-\frac{1}{2},-z-\frac{1}{2}$ with a distance of 3.429 (7) \AA between them.

Experimental. The title compound (I) was prepared from tetrachloroplatinate(II) and dimethyl sulfide by the method of Roulet \& Barbey (1973). The sample crystal was mounted on a glass fiber in a random orientation. Details of data collection and structure

(I)

* Author to whom correspondence should be addressed.

0108-2701/90/010135-02\$03.00
refinement are given in Table 1. Space group determined from systematic absences: $h 0 l$ with $h+l$ odd; $0 k 0$ with k odd. The position of the Pt atom was determined from a Patterson map, and the remaining atoms were located in succeeding difference Fourier syntheses. Refinement by fullmatrix least squares with Enraf-Nonius SDP/VAX (Frenz, 1978); non-H atoms anisotropic; H atoms located by ΔF synthesis and placed in calculated positions with $B_{\text {iso }}$ of the calculated H atoms given values of 1.3 times $B_{\text {eq }}$ of the C atom. H atoms included in the structure-factor calculations riding on

Table 1. Experimental details

Crystal description	Yellow, fragment of a plate, $0.38 \times 0.30 \times 0.30 \mathrm{~mm}$
Instrument	Enraf-Nonius CAD-4 diffractometer, graphite monochromator
Corrections	Lorentz-polarization
	Linear decay (0.952-1.130 on I)
	Empirical absorption (0.38-0.99 on I)
	Extinction [3.23 (7) $\times 10^{-7}$]
Maximum $2 \theta\left({ }^{\circ}\right.$)	64.0
$h k l$ ranges	$h=0-13$
	$k=0-19$
	$l=-13-13$
No. of reflections	3894 total
	3559 unique
$R_{\text {int }}$ of averged reflections	0.031
No. unobserved reflections	1064
Reflections included	2495 with $F_{o}>3 \sigma\left(F_{o}\right)$
Solution	Heavy-atom method
Function minimized	$\sum w\left(\left\|F_{0}\right\|-\left\|F_{c}\right\|\right)^{2}$
Weights	$4 F_{o}^{2} \mathrm{~L} \mathrm{p}^{2} /\left[S^{2}\left(C+R^{2} B\right)+\left(0.02 F_{o}^{2}\right)^{2}\right]$
	$\mathrm{Lp}=$ Lorentz-polarization
	$S=$ scan rate
	$C=$ total integrated peak count
	$R=$ ratio of scan time to background counting time
	$B=$ total background count
Parameters refined	83
Unweighted residual, R	0.034
Weighted residual, $w R$	0.038
Goodness of fit, S	1.62
Maximum $\boldsymbol{\Delta} / \boldsymbol{\sigma}$	0.01

Table 2. Fractional atomic coordinates and equivalent
isotropic temperature factors isotropic temperature factors

	$B_{\text {eq }}=\left(8 \pi^{2} / 3\right) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathrm{a}_{i}, \mathrm{a}_{j}$.			
	\boldsymbol{x}	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
Pt1	0.02468 (2)	0.48251 (2)	0.29481 (3)	2.619 (4)
Cll	0.2822 (2)	0.4730 (1)	0.2728 (3)	4.93 (4)
C12	0.0302 (2)	0.3097 (1)	0.3421 (2)	3.94 (4)
S1	-0.2271 (2)	0.4742 (1)	0.3183 (2)	3.15 (3)
S2	0.0155 (2)	0.6518 (1)	0.2482 (2)	$3 \cdot 60$ (3)
C1	-0.3238 (7)	0.5945 (6)	0.303 (1)	4.8 (2)
C2	-0.3433 (8)	0.4184 (7)	0.149 (1)	$5 \cdot 3$ (2)
C3	$0 \cdot 1894$ (8)	0.7079 (6)	0.3707 (9)	4.5 (2)
C4	0.062 (1)	0.6691 (7)	0.0741 (9)	5.8 (2)

Table 3. Bond distances (\AA), bond angles (${ }^{\circ}$) and torsion angles (${ }^{\circ}$)

Pt1	Cl1	$2 \cdot 315$ (1)			S1	Cl	1.783 (6)		
Pt1	Cl2	2.319 (1)			S1	C2	1.779 (7)		
Pt1	S1	$2 \cdot 269$ (1)			S2	C3	1.783 (6)		
Ptl	S2	$2 \cdot 272$ (1)			S2	C4	1.794 (6)		
Cl 1	Pt1	Cl 2			Pt1	S1	Cl		
Cl1	Pt1	S1	174	(5)	Pt1	S1	C2	105	
Cl1	Pt1	S2		(5)	Cl	S1	C2		
Cl 2	Pt1	S1		(5)	Pt1	S2	C3	107	
Cl2	Ptl	S2	179	(5)	Pt1	S2	C4		
S1	Ptl	S2		(5)	C3	S2	C4		
Cl 2	Ptl	S1	C1	$177 \cdot 0$ (4)	Cl	Ptl	S2	C3	-51.0 (3)
C12	Pt1	S1	C2	-75.8 (3)	Cl	Ptl	S2	C4	55.0 (3)
S2	Ptl	S1	C1	-3.1 (4)	S1	Pt1	S2	C3	129.6 (3)
S2	Ptl	S1	C2	104.1 (3)	S1	Ptl	S2	C4	- 124.4 (3)

the C atoms to which they are attached. The final cycle of refinement included 83 parameters and converged to $R=0.034$, extinction coefficient $g=$ $3.23(7) \times 10^{-7}$ where the correction factor $(1+$ $\left.g I_{c}\right)^{-1}$ was applied to F_{c}. Atomic scattering factors from International Tables for X-ray Crystallography (1974). Anomalous-dispersion effects were included in F_{c} with values taken from International Tables for X-ray Crystallography (1974). The highest peak in the final difference Fourier map had a height of $1 \cdot 9$ (2) e \AA^{-3}, and the minimum negative peak had a depth of $-1.6(2) \mathrm{e} \AA^{-3}$, both near the Pt atom. Final positional and equivalent isotropic displacement parameters for all non- H atoms are given in Table 2; bond lengths, angles and torsion angles are shown in Table 3.* Fig. 1 shows the molecule and the atomic numbering scheme, and Fig. 2 is a packing diagram. Programs used were ORTEPII (Johnson, 1976), PLUTO78 (Motherwell \& Clegg, 1978), and SDP/VAX (Frenz, 1978).

Related literature. Synthesis of $c i s$-dichlorobis(diethyl sulfide)platinum(II): Roulet \& Barbey (1973);

[^0]

Fig. 1. The molecule of cis- $\left[\mathrm{PtCl}_{2}\left\{\mathrm{~S}\left(\mathrm{CH}_{3}\right)_{2}\right\}_{2}\right]$, with thermal ellipsoids drawn at the 50% probability level.

Fig. 2. Stereo packing diagram of $c i s$ - $\left[\mathrm{PtCl}_{2}\left\{\mathbf{S}\left(\mathrm{CH}_{3}\right)_{2}\right\}_{2}\right]$.
structure of trans-dichlorobis(dimethyl sulfide)platinum(II): Cox, Saenger \& Wardlaw (1934); structure of cis-dichlorobis(4,4'-dichlorodiphenyl sulfide)platinum(II): Spofford, Amma \& Senoff (1971).

Acknowledgement is made to the Donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this research.

References

Cox, E. G., Saenger, H. \& Wardlaw, W. (1934). J. Chem. Soc. pp. 182-186.
Frenz, B. A. (1978). The Enraf-Nonius CAD-4 SDP/VAX - A Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Solution. In Computing in Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld \& G. C. Bassi, pp. 64-71. Delft Univ. Press.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Motherwell, W. D. S. \& Clegg, W. (1978). Pluto78. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
Roulet, R. \& Barbey, C. (1973). Helv. Chim. Acta, 56, 21792186.

Spofford, A. III, Amma, E. L. \& Senoff, C. V. (1971). Inorg. Chem. 10, 2309-2312.

Structure of (-)-(R)-[2-(Aminomethyl)pyrrolidine](1,1-cyclobutanedicarboxylato)platinum(II) Monohydrate (DWA-2114R)

By M. Yonel, \dagger H. Murata, M. Itoh, Y. Watanabe, K. Ochi, M. Honda and Y. Nawata*
Research Laboratories, Chugai Pharmaceutical Co. Ltd, Takada, Toshima, Tokyo 171, Japan

(Received 13 July 1989; accepted 16 August 1989)

Abstract

Pt}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}, M_{r}=455 \cdot 38\), monoclinic, $P 2_{1}, a=8.7712$ (7), $b=10.720$ (1), $c=$ 7.3221 (6) $\AA, \beta=93.03$ (1),$V=687.5$ (2) $\AA^{3}, Z=2$, $D_{x}=2.200 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo K $\alpha)=0.71073 \AA, \quad \mu=$ $103.266 \mathrm{~cm}^{-1}, F(000)=436, T=298 \mathrm{~K}$, final $R=$ 0.020 for 2700 unique reflections $\left[F_{o}^{2}>2 \sigma\left(F_{o}^{2}\right)\right]$. DWA-2114R is a square-planar Pt complex with the dicarboxylate chelate ring in a boat conformation and with the aminomethylpyrrolidine chelate ring in

\dagger Deceased.

* To whom correspondence should be addressed.

Fig. 1. A perspective view of the molecule with the numbering scheme.

Fig. 2. Packing diagram for the title compound. Hydrogen bonds are shown as narrow lines.
an envelope conformation. The cyclobutane ring adopts a puckered conformation. The absolute configuration was determined by the Bijvoet method.

Experimental. Colorless prisms of title compound were grown from an aqueous solution. $[\alpha]_{D}^{20^{\circ} \mathrm{C}}=$ -41.7° (water). Crystal size $0.20 \times 0.13 \times 0.10 \mathrm{~mm}$, Enraf-Nonius CAD-4 diffractometer, Mo $K \alpha$ radiation, graphite monochromator, $\theta-2 \theta$ scan with scan speed $1.65-4 \cdot 12^{\circ} \mathrm{min}^{-1}$ in θ, scan width $(0.50+$ $0 \cdot 15 \tan \theta)^{\circ}$. Range of indices, $-14 \leq h \leq 14,0 \leq k \leq$ $17,0 \leq l \leq 11\left(\theta<35^{\circ}\right)$. Lattice constants determined based on 252θ values ($11<\theta<18^{\circ}$). Variation of standard $<2.5 \% ; 3340$ reflections measured; 2700 observed reflections with $F_{o}^{2}>2 \sigma\left(F_{o}^{2}\right)$. Systematic absences $0 k 0, k$ odd. Empirical corrections for absorption (North, Phillips \& Mathews, 1968); min., max. transmission coefficients $0.937,1 \cdot 000$. Structure solved by the heavy-atom method. Refined by fullmatrix least squares. The locations of 18 H atoms were calculated. Non-H atoms refined with anisotropic thermal parameters, but H atoms with fixed isotropic thermal parameters $\left(B=5 \cdot 0 \AA^{2}\right) . \sum w\left(\left|F_{o}\right|\right.$

Table 1. Final fractional coordinates and equivalent isotropic temperature factors for non- H atoms with e.s.d.'s in parentheses

$B_{\text {eq }}=(4 / 3) \sum_{i} \sum_{j} \boldsymbol{\beta}_{i j} \mathbf{a}_{i} \cdot \mathbf{a}_{\mathrm{j}}$.				
	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
Pt	0.92524 (2)	1.000	0.58856 (2)	1.989 (2)
N(1)	0.7701 (6)	0.8759 (6)	0.4950 (8)	$3 \cdot 3$ (1)
C(2)	0.6641 (6)	0.9400 (5)	0.3607 (8)	$2 \cdot 83$ (9)
C(3)	0.6262 (6)	1.0699 (5)	0.4250 (8)	$2 \cdot 56$ (9)
C(4)	0.5219 (7)	1.0766 (6)	0.587 (1)	3.5 (1)
C(5)	0.6118 (8)	$1 \cdot 1450$ (7)	0.741 (1)	$3 \cdot 7$ (1)
C(6)	0.7268 (7)	1.2185 (6)	0.6410 (9)	$3 \cdot 2$ (1)
N(7)	0.7694 (5)	1.1275 (4)	0.4982 (6)	1.98 (6)
$\mathrm{O}(8)$	1.0797 (4)	1.1334 (4)	0.6659 (6)	2.75 (7)
C(9)	1.1725 (5)	1.1217 (5)	0.8125 (6)	1.89 (7)
$\mathrm{O}(10)$	1.2508 (5)	1.2118 (4)	0.8598 (6)	$3 \cdot 24$ (8)
C(11)	1.1709 (4)	1.0029 (8)	0.9159 (5)	2.11 (6)
C(12)	1.2849 (6)	1.0094 (6)	1.0857 (6)	2.87 (9)
C(13)	1.153 (1)	1.0446 (8)	1.204 (1)	4.8 (2)
C(14)	1.0350 (6)	1.004 (1)	1.0514 (7)	3.73 (9)
$\mathrm{O}(15)$	1.2779 (5)	0.8066 (4)	0.8300 (7)	3.74 (9)
C(16)	1.1740 (6)	0.8844 (5)	0.7924 (8)	$2 \cdot 80$ (9)
$\mathrm{O}(17)$	1.0723 (4)	0.8657 (4)	0.6677 (6)	$2 \cdot 89$ (7)
OW	0.5986 (6)	0.8125 (6)	0.8261 (7)	4.7 (1)

0108-2701/90/010137-02\$03.00

[^0]: * Tables of structure factors, anisotropic thermal parameters, H -atom positions, and least-squares planes have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52227 (27 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

